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Science and Technology, University of Cambridge, Cambridge, United Kingdom, 3 National Research Council, Institute for 
Biomedical Technologies, Milan, Italy

The genetic component of many common traits is associated with the gene expression 
and several variants act as expression quantitative loci, regulating the gene expression 
in a tissue specific manner. In this work, we applied tissue-specific cis-eQTL gene 
expression prediction models on the genotype of 808 samples including controls, 
subjects with mild cognitive impairment, and patients with Alzheimer's Disease. We then 
dissected the imputed transcriptomic profiles by means of different unsupervised and 
supervised machine learning approaches to identify potential biological associations. 
Our analysis suggests that unsupervised and supervised methods can provide 
complementary information, which can be integrated for a better characterization of 
the underlying biological system. In particular, a variational autoencoder representation 
of the transcriptomic profiles, followed by a support vector machine classification, 
has been used for tissue-specific gene prioritizations. Interestingly, the achieved gene 
prioritizations can be efficiently integrated as a feature selection step for improving the 
accuracy of deep learning classifier networks. The identified gene-tissue information 
suggests a potential role for inflammatory and regulatory processes in gut-brain axis 
related tissues. In line with the expected low heritability that can be apportioned to 
eQTL variants, we were able to achieve only relatively low prediction capability with deep 
learning classification models. However, our analysis revealed that the classification 
power strongly depends on the network structure, with recurrent neural networks 
being the best performing network class. Interestingly, cross-tissue analysis suggests a 
potentially greater role of models trained in brain tissues also by considering dementia-
related endophenotypes. Overall, the present analysis suggests that the combination 
of supervised and unsupervised machine learning techniques can be used for the 
evaluation of high dimensional omics data.

Keywords: eQTL, gene expression imputation, GTEx, variational autoencoder, support vector machine, deep 
learning, recurrent neural networks, Alzheimer’s
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INTRODUCTION

Nowadays researchers can access omics data at different levels, such 
as genomics (e.g., dbGaP1), transcriptomics (e.g., GEO expression2) 
and also at multi-omics levels (e.g., GTEx3, Encode4). Given the 
advancement of high-throughput technologies, the increasing 
availability of omics data can be expected over time. This will allow 
researchers to better analyze complex systems characterized by 
many interacting features as the biological systems.

Traditional analytical methods on omics data, such as 
Genome-wide association study (GWAS) and differential 
expression analysis, usually rely on univariate approaches with 
specific statistical modelling (Visscher et al., 2017; McDermaid 
et al., 2018). These approaches, despite being robust, are limited 
in detecting potential combinatorial effects in the underlying 
biological system. Indeed, biological networks can be highly 
complex with many feedback regulatory loops (Franco and 
Galloway, 2015). A comprehensive analysis of interaction effects is 
not feasible with traditional approaches due to the combinatorial 
explosion of the input factor space (Berger et al., 2013).

On the other hand, machine learning methods have proved to 
be efficient for the analysis of high dimensional complex systems, 
although the application of machine learning methods in omics 
data is still relatively uncommon due to the limited interpretability 
of the outcome of machine learning frameworks (Li et al., 
2016). In this work, we investigate the applicability of different 
machine learning methods on omics data using, as a case study, 
matrices of tissue-specific predicted transcriptomic profiles in 
Alzheimer’s disease (AD). AD is a progressive neurodegenerative 
disorder, representing the predominant form of dementia (Wang 
et al., 2017), and is characterized by progressive deterioration of 
memory and cognitive functions that can be tested with different 
clinical tests (Kirsebom et al., 2017). The pathophysiology of AD 
involves the formation of the characteristic extracellular amyloid 
plaques and intracellular neurofibrillary tangles (Kuznetsov and 
Kuznetsov, 2018).

A lot of research has been done in order to identify the 
genetics factor contributing to AD. In cases of specific familiar 
forms of AD, which are recurrent among family members and 
are characterized by early onset (i.e., age < 65), disease causing 
mutations in specific genes have been identified, namely amyloid 
precursor protein (APP), Presenilin 1 PSEN1 and Presenilin 
2 PSEN2 (Piaceri et al., 2013). This is not the case of the most 
common sporadic AD forms, characterized by late onset (age > 
65), representing about 95% of AD cases (Bali et al., 2012), for 
which the “4 allele of Apolipoprotein E (APOE) is the only strong 
identified genetic risk factor (Dorszewska et al., 2016).

However, the relatively high heritability also of sporadic 
AD, estimated to be around 60% to 80% (Van Cauwenberghe 
et al., 2016), combined with the identification of a number of 
genetic risk loci from GWAS, suggests the presence of a polygenic 
component in late onset AD (Escott-Price et al., 2015). Indeed, 

1 https://www.ncbi.nlm.nih.gov/gap
2 https://www.ncbi.nlm.nih.gov/geo/
3 https://gtexportal.org/home/index.html
4 https://www.encodeproject.org/

GWAS hits can be associated with different biological pathways, 
such as cholesterol and lipid metabolism, immune system, 
inflammatory response, and endosomal vesicle cycling (Lambert 
et al., 2013). Moreover, several susceptibility loci are localized in 
gene-dense regions, but it remains unknown which genes of these 
regions are responsible for the association (Van Cauwenberghe 
et al., 2016). In fact, identifying the functional role of variants in 
intergenic regions is not a trivial process, since the related genes 
might not be the closest to the loci (e.g., chromatin 3D structure 
can place in proximity relatively distant region in the primary 
DNA sequence) (Dekker et al., 2013). Moreover, many complex 
phenotypes have a polygenic architecture, in which many variants 
have minor effects over a phenotype, and polygenic risk score 
modeling is capable of finding significant genetic associations 
for traits with no monogenic causes, but with relatively high 
heritability (Chatterjee et al., 2016).

Different works show a co-localization between Expression 
Quantitative Loci (eQTL) and GWAS hits indicating that the 
biological effect of non-coding variants can be exerted through 
the regulation of gene expression (Hormozdiari et al., 2016; Wen 
et al., 2017), that is a polygenic trait in which many variants may 
be involved. Indeed, different tools model the combined effect 
of eQTL signals, considering both strong functional SNP effects 
and additive effects for modest-strength signals (Gamazon et al., 
2015; Gusev et al., 2016). Conducting gene association on the 
basis of the genetic component of gene expression regulation, 
also called Transcription Wide Association Study (TWAS), 
proved to be particularly efficient in finding associations with 
many traits (Gusev et al., 2016).

There are many advantages in testing the genetic component 
of gene expression rather than evaluating the nominal variant 
GWAS association: I) the aggregation of multiple eQTL into 
one gene can boost the association by including additive effect 
among variants; II) genes are more interpretable biological unit 
in comparison with variants; III) the statistical power is increased 
due to the reduction of multiple-comparison tests from hundreds 
of thousands/million variants (before/after imputation) to the 
order of thousands of genes (after filtering for gene expression 
heritability); IV) eQTL are tissue specific and therefore it is 
possible to perform gene association analysis in the target tissue 
for the phenotypes and also in secondary tissues for potential 
peripheral biomarkers (e.g., blood).

Noteworthy, the evaluation of the solely genetic component 
of gene expression is less comprehensive than the actual gene 
expression analysis, but has the advantage to focus only on 
the genetic/heritable component, avoiding environmental 
confounding effects (Gamazon et al., 2015). Since polygenic 
effects can be expected also at gene expression level, given the 
complexity of biochemical systems, performing multi-gene 
evaluation can provide greater insights concerning potential 
biological associations (Marigorta et al., 2017). Therefore, 
machine learning and deep learning methodologies have proved 
to be efficient at identifying transcriptomic profiles associated 
with specific phenotypes, considering different input data, 
such as measured RNA-seq data (Wang et al., 2018), single cell 
expression (Hu et al., 2016), and also imputed transcriptomic 
data (Gottlieb et al., 2017).
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In this work, we tested multiple machine learning and deep 
learning approaches to study multi-tissue imputed transcriptomic 
profiles in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohort (Weiner et al., 2013). Noteworthy, the analysis of 
imputed transcriptomic profiles on ADNI data has been already 
performed at single gene level identifying, suggesting potential 
specific gene-tissue associations with amyloid deposition 
(Hohman et al., 2017). In the following sections we introduce 
the supervised and unsupervised methods we exploited in this 
work, the results achieved combining these approaches, and a 
discussion of the achieved outcomes.

METHODS

Machine Learning Methods in 
Bioinformatics
Machine Learning (ML) algorithms have proved to be 
particularly useful for the analysis of complex big biological data 
(Olson et al., 2017). For instance ML has been applied to detect 
epistasis within the human genome (McKinney et al., 2006) 
suggesting that ML can reveal non-linear behavior in biological 
systems. In the same direction, more recent deep learning 
approaches have been profitably exploited to analyze genotype/
phenotype associations (Min et al., 2017) as well as to extract 
relevant information from many data modalities, including text, 
images, and sounds (Li et al., 2019).

Deep learning methods follow a data-driven approach and 
are therefore well-designed to detect nonlinear-behaviors, 
which are relatively common in natural systems (Tang et al., 
2019). Networks can vary depending on the number of layers 
and type of nodes and not all of them perform equally well on 
different data typology. Convolutional Neural Networks (CNN) 
are generally applied to recognize objects in a pattern, Recurrent 
Neural Networks (RNN) to analyze temporal data, but it is 
not mandatory to use any kind of network only for a specific 
task. For instance, CNNs were successfully used to predict the 
enhancer-promoter interactions with DNA sequences (Zhuang 
et al., 2019) and for accurate clustering of sequences (Aoki 
and Sakakibara, 2018). RNNs were used instead for predicting 
transcription factor binding sites (Shen et al., 2018) and to 
dissect the regulation of mRNA to protein-coding translation 
(Hill et al., 2018).

Noteworthy, also variational autoencoders (VAEs) showed 
good performance in capturing biologically relevant feature in 
gene expression data analysis (Way and Greene, 2017a). VAEs 
are part of a large branch of deep learning architectures, the so 
called generative models (Goodfellow, 2016). These architectures 
are based on an encoding-decoding approach and, differently 
from the standard autoencoders, they assume a stochasticity in 
the modelling of the data. The original input matrices of features 
are compressed in a lower dimensional space, the so called 
encoding phase, and are reconstructed back in a second step, 
called decoding phase. Both phases are composed by neural 
networks. VAEs have seen increasing success in many different 
applications in the last few years, among the unsupervised 
methodologies recently developed, and they are widely used 

in different types of data such as time series, images or gene 
expressions (Goodfellow, 2016; Goodfellow et al., 2016; Way and 
Greene, 2017b).

Tissue Specific Gene Expression 
Imputation
Data used for the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). ADNI was launched in 2003 as a 
public-private partnership led by Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial Magnetic 
Resonance Imaging (MRI), Positron Emission Tomography 
(PET), other biological markers, clinical and neuropsychological 
assessment can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
In the present work, we analyzed the ADNI1-GWAS dataset 
including gene array genotyping data for 808 samples available 
on ADNI portal.

Rigorous quality control has been performed. Namely, 
samples have been checked for sex, missing genotype rates 
lower than 0.05 and heterozygosity levels F < 0.2, while variants 
with Hardy–Weinberg p-value < 1e – 10 have been removed. 
Then, using the tool by W. Rayner5 we checked SNPs for strand 
consistency, allele names, position, Ref/Alt assignments and 
minor allele frequency (MAF) in comparison to the reference 
panel. In order to increase the available genetic information, we 
imputed our data using Sanger Imputation Server6 exploiting 
Eagle2 for phasing (Loh et al., 2016) and Positional Burrows–
Wheeler Transform (Durbin, 2014), considering Haplotype 
Reference Consortium version 1.1 (McCarthy et al., 2016) 
as reference panel. As a postimputation quality control, we 
removed variants with info quality level < 0.6. Genotype calls 
with posterior probability < 0.9 were set to missing. Post-QC 
imputed data was used to estimate gene expression regulation 
across the different samples.

In order to predict the genetic component of gene expression, 
we used PrediXcan that evaluates the aggregate effects of cis-
regulatory variants (within 1MB upstream or downstream of 
genes of interest) on gene expression via an elastic net regression 
method (Gamazon et al., 2015). PediXcan needs a reference dataset 
in which both genome variation and gene expression levels have 
been measured to build prediction models for gene expression. 
We exploited already available models trained on GTEX data7 
to impute tissues specific transcriptomic profiles in a total of 42 
tissues (we excluded sex specific tissues, e.g., prostate, ovary, etc.). 
The imputed transcriptomic profiles were subsequently analyzed 
using different machine learning approaches (Figure 1). On the 
one hand, unsupervised machine learning methods were used to 
analyze data structure, on the other hand, supervised methods 
were used to test for the presence of “signal” compared to AD 
related phenotypes.

5 http://www.well.ox.ac.uk/wrayner/tools
6 https://imputation.sanger.ac.uk/
7 https://gtexportal.org/home
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Gene Prioritization
Gene prioritization was performed considering as input the 
predicted transcriptomic matrices from ADNI1-GWAS (excluding 
sex-specific tissues) resulting in a total of 42 tissues with 808 
samples each (42 × 808 = 33, 936 samples overall). We performed 
an independent analysis involving 528 “cases”, that included people 
affected by dementia and/or with cognitive dysfunction (AD and 
MCI) for a total of 528 × 42 = 22, 176 input data, and 280 controls 
including healthy subjects for a total of 280 × 42 = 11, 760 input 
data. Each sample was comprised of 24, 203 genes in total.

To identify relevant genes we used variational autoencoders 
(VAEs) with a single hidden layer with a dimension of 42 units, 
hence matching the number of tissues. We adapted the code 
publicly provided by Way and Greene (2017b) to implement 
our VAE’s architecture. In the encoding phase, the network 
inputs are the original dataset features representation x



. These 
are transformed by means of non-linear activation functions in 
a hidden representation that we denominated z



 and that we 
assume being characterized by a Gaussian probability density 
function. In this phase the 2 latent representations of μ and λ of 
the distribution are learned.

The second part of the architecture that we denoted as the 
decoder is again built as a neural network. The input this time is 

the vector z


 i.e. the latent stochastic representation of the input 
dataset and the output will be the reconstructed representation 
′


x  of the original input vector x


. A representation of the VAE 
architecture can be seen in Figure 1. The loss function of the VAE 
consists of two parts: the first part being the reconstruction loss 
(negative log-likelihood) and the second part being the function 
expressing the Kullback–Leibler (KL) divergence considering the 
learned hidden distribution and a priori Gaussian distribution 
(Wetzel, 2017).

The first term of the loss function is considered over the 
encoder distribution of the hidden representation and it 
“encourages” the decoding phase to correctly reconstruct the 
input data (Altosaar, 2019). KL divergence is used to enforce the 
similarity between the distribution of the latent representation 
and the normal distribution.

We used separate VAEs to encode the gene expression of 
the cases and healthy classes. Original data include positive 
(upregulated genes) and negative values (downregulated genes). 
In order to compute VAE analysis, input data have been scaled 
between 0 and 1. Noteworthy, different genes can be present in 
different tissues while VAE pipeline requires an equal number 
of gene as input, thus NaN (non-existent/Not a Number) values 
during VAE input preprocessing were set to 0. The input samples 

FIGURE 1 | Framework of integrative analysis of multi-tissues expression profiles. Starting from genotyping data (m individuals per n variants) we imputed tissues 
specific transcriptomic profiles (for any tissue Ti, where i = 1‚…‚ k) by means of cis-eQTL PrediXcan models trained on GTEx data. Variational autoencoder followed 
by support vector machine (SVM) latent dimension-tissue match on the imputed gene expression matrices (m individuals per z genes) is used as a feature selection 
to identify the most relevant genes per tissue (Ti = gene1‚…‚ genes where i is the ith tissue and s in the number of prioritized genes) to provide as input of the 
recurrent neural network classifier.
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were randomly split in training (80%) and test sets (20%) 
using a stratified approach to maintain the same proportion of 
samples per tissue. We used the Adam optimizer (Kingma and 
Ba, 2014) with a learning rate of 0:001 over 75 epochs over the 
data, rectified linear units during the encoding stage, sigmoid 
activation during the decoding stage, batch size of 500, and 
warmup (ĸ) of 1. Hyperparameters were manually selected 
using a VAE that was not used further in the analysis, to achieve 
optimal reconstruction performance without overfitting. The 
entire autoencoding procedure was repeated 75 times separately 
for the healthy and AD classes in order to study the repeatability 
of results.

The main goal of the unsupervised analysis was to identify the 
up or down-regulation of certain genes in specific tissue types 
in cases and healthy samples. We used a two-step procedure 
to achieve this association: we identified the tissue(s) encoded 
in each latent dimension unit of the VAE models, and then we 
identified the genes most strongly connected to the given latent 
dimension unit.

In order to identify the tissue(s) encoded in each latent 
dimension, we used the activations of the hidden layer in the 
VAEs as an input feature to 42 binary Support Vector Machine 
(SVM) classifiers, one for each tissue. We trained each SVM 
classifier to predict whether the input sample to the VAE 
belonged to a specific tissue relying on the activation value of 
a single unit from the embedded latent dimension of the VAE. 
We repeated this tissue-latent unit association procedure for each 
tissue and each unit in the hidden VAE layer. We performed a 
5-fold stratified cross-validation using a linear SVM (C = 1 with 
class weight balance), thus running a total of 5 × 42 × 42 SVM 
classifiers for each VAE (a 5-fold cross validation procedure, for 
42 binary classifiers, for each one of the 42 hidden layer’s unit). 
We considered a given latent VAE unit to be predictive of a 
specific tissue type, hence associated with it, if the F1 score was 
greater than 0.8. We found that some hidden units encode more 
than 1 tissue type.

It is noteworthy to mention that we tried other unsuccessful 
approaches. Firstly, we tried to use a single VAE with both cases 
and controls, trying to find subclusters besides the tissues which 
cluster very well (see Figure 2) in the VAE’s latent dimension as 
well as in the original data. We also tried to use a single VAE 
for each tissue in separate. No obvious structures were found 
when trying to match the results of t-SNE algorithm with all the 
available phenotypes, including case/control status. Filtering the 
input for genes within each tissue that show nominal significance 
for case/control status using standard simple univariate tests 
did not improve the results. Filtering genes with R2 > 0.15 of 
expression prediction using the same threshold as in Hohman 
et al.ʹs work (Hohman et al., 2017) did not improve the results 
as well. In order to understand the features important for 
classification, we also implemented a saliency map approach. 
This method is able to detect where the attention of the network 
(VAEs in our study) is focused (Itti et al., 1998), which can be seen 
as a sensitivity analysis approach. Saliency maps are generally 
applied in computer vision but, they can be used in other areas. 
In our case, the maps were computed on the encoder part of the 
VAEs and the information extracted is the importance of each 

gene in the analysis, which is coded as an rgb color code. From 
this analysis we were not able to identify significative patterns in 
the input data.

Considering the VAE used in this work, the association of 
the genes with the latent dimension units can be performed 
solely relying on the magnitude of the corresponding network 
weights. Given that each VAE has a single hidden layer, each 
latent dimension unit is connected directly to every output unit, 
i.e. reconstructed gene, via a linear transformation. Since each 
reconstructed gene is a summation of the weighted contribution 
of each latent unit, we could rank the relative importance of the 
units in the hidden layer relying on the magnitude of the weights. 
Thus, we selected the 100 most positive and 100 most negative 
weights for each latent unit encoding a given tissue. This resulted 
in a set of 100 upregulated and 100 downregulated genes, 
respectively for each of the trained VAEs. The entire association 
procedure was performed for the 75 VAEs from healthy and AD 
samples. We counted the total number of times a given gene was 
considered up or downregulated by our association procedure 
and kept it if it appeared more than three times overall. As a result, 
we produced a list of up or down regulated genes associated with 
each of the 42 types of tissues. We used this list as an input for 
pathway enrichment analysis.

In order to perform enrichment analysis, we used Fast Gene Set 
Enrichment Analysis (FGSEA), a tool developed by Sergushichev 
et al. (Sergushichev, 2016). The approach implemented by FGSEA 
deals with quantitative data having inherently directionality like 
gene expression. The model is based on gene statistic array S = 
Si‚…Sn where N is the number of samples and Si > 0 represent 
over-expression of gene i while Si < 0 represent down-expression. 
The absolute value of Si represents a magnitude of the change. 
The list of gene sets P of length m usually contains groups of 
genes that are commonly regulated in certain biological process. 
To quantify a co-regulation of genes in a gene set p Subramanian 
et al. (2005) introduced a gene set enrichment score function sr(p) 
that uses gene rankings (values of S). Given a gene set p the more 
positive is the value of sr(p) the more enriched the gene set is 
in positively-regulated genes g with Sg > 0, accordingly, negative 
sr(p) corresponds to enrichment of negatively regulated genes. 
To deal with multiple-comparison issues an empirical p-value is 
computed by randomly sampling gene sets of the same size of p.

The lists of downregulated and upregulated genes per tissue 
(referred as List-unsupervised) have been considered also as 
a feature selection step to build prediction models. We also 
tested other approaches to identify the most relevant genes as 
considering: I) nominal significantly associated genes from 
logistic association test between predicted gene expression levels 
and phenotype status (referred as List-PrediXcan), II) nominal 
associated genes derived by the combination of single tissue-trait 
association using generalized Berk–Jones test (referred as List-
UTMOST) obtained with UTMOST tool (Hu et al., 2019).

Phenotype Prediction Models From 
Imputed Transcriptomic Matrices
Several supervised analysis techniques were tested in order to 
understand which one could achieve better results in identifying 
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cases and controls from the transcriptomic profiles: Logistic 
Regression (LR), Support Vector Machine (SVM), Random 
Forest (RF) and Deep Learning networks. The latter are known 
to achieve better results compared to other machine learning 
methods, especially when the relationships between the observed 
features is not supposed to be linear (LeCun et al., 2015).

Since we imputed data according to specific tissues, we 
searched the model that would perform better among them. 
For this reason, we randomly selected 6 of the 42 tissues 
(Adipose Subcutaneous, Artery Aorta, Brain Spinal, Colon 
Transverse, Thyroid, Whole Blood) and trained the models 
on 600 of the 808 samples from ADNI1-GWAS, considering 
that the dataset is slightly unbalanced, as it contains more AD 
samples (528) than controls (280). SVM, RF and LR were not 
capable of learning how to classify cases and controls, since they 
assigned the samples only to the majority class. Concerning 
Deep Learning, the first accomplishment was understanding 

the appropriate architecture to elaborate transcriptomic data: 
we tested two Dense Neural Networks (DNN), two CNNs and 
an RNN.

The first DNN (DNN-1) consisted of 6 layers with respectively 
800, 500, 400, 200, 40 and 2 nodes (called neurons). The second 
DNN (DNN-2) tested consisted of only three layers with 800, 
200 and 2 neurons. The first CNN (CNN-1) had 6 layers: a 
convolutional layer of 10 filters, a convolutional layer of 5 
filters after which a dropout regularization was applied, another 
convolutional layer of 5 filters, a dense layer of 200 neurons with 
a dropout, and two dense layers of 100 and 2 neurons in the end. 
The second CNN (CNN-2) was a pure convolutional network 
of two convolutional layers of 10 and 5 filters, with a dropout 
regularization applied between them, and a dense layer with 2 
neurons as the output layer. The RNN had 3 layers: two Long 
Short-Term Memory cells (LSTM) with output dimension of 30 
and 20 and a final dense layer of 2 neurons.

FIGURE 2 | t-SNE embedding of tissue genes, run using the 42 activations on the latent dimension of a VAE to check the embedded structure of all samples. It is 
obvious that the latent activations are encoding information about each tissue.
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Looking at the preliminary training results (Table 3) we 
decided to select and optimize the RNN, manually searching the 
optimal network’s size and then identifying the hyperparameters 
with the Grid Search algorithm (batch size = 100, epochs = 100). 
The final architecture consisted of the input and output layers and 
two hidden LSTM layers of 150 and 10 output dimensions. After 
every hidden layer a batch normalization was applied to maintain 
the mean activation close to 0 and the activation standard 
deviation close to 1. The input layer dimension was equal to the 
number of genes characterizing the tissue transcriptomic profile, 
while the output layer was a dense layer of dimension two to make 
possible the classification of the samples in AD and not-AD.

Considering all the 42 tissues, we had the chance to perform 
two types of analysis: a tissue-specific analysis and a cross-
tissue analysis. In the tissue-specific analysis, we trained models 
on transcriptomic data specific for each tissue. Therefore, we 
implemented predictive models that could impute the case/
control condition on new transcriptomic data related to the same 
tissue. The input dimensions of the networks were in the order 
of thousands, but different for every tissue: the minimum was 
2,041 characterizing the Brain Substantia Nigra tissue, and the 
maximum was reached by the Thyroid tissue with 9,655.

The aim of the cross-tissue analysis was, on the other hand, to 
observe the similarities between tissues in relationship with the 
Alzheimer’s disease. Models were trained on each single tissue, 
taking as input the genes shared by all the 42 tissue transcriptomic 
profiles (24, 203). The column reporting the information for a 
gene was filled with zeros if it was not possible to impute the 
transcriptomic profile of that gene in a specific tissue. Comparing 
the maximum number of genes imputed for the tissues and the 
total number of genes identified in all the analysis, it was clear 
that the new arranged matrices of 24, 203 genes for 808 samples 
were particularly sparse. The models were then used to impute 
the case/control condition on tissues different to the one used for 
the training.

Both in single tissue and cross-tissue analyses all the models 
were trained on 600 samples from ADNI1-GWAS and the tests 
were performed on the remaining 208 samples. The network 
architecture was in all cases the one in Figure 1, adjusting the 
input dimension according to the different analysis. A 10-fold 
cross validation was applied and models compiled with the Adam 
optimizer and the binary cross-entropy as the optimization score 
function. The monitored scores were the accuracy, area under 
the curve (AUC), precision, recall, and F1. The saliency map was 
applied in the first LSTM layer, therefore we could observe if some 
samples were more informative than other for the classification 
purpose. Keras8 and Scikit-learn9 Python libraries were used, 
built on top of TensorFlow10 to implement the networks.

We then worked on features selection to find groups of genes 
that were likely to improve the model performance regarding 
the samples partition in case/control, both in the single-tissue 
and cross-tissues approaches. The identification of such groups 
in single-tissue analysis can bring to the determination of 

8 https://keras.io/
9 https://scikit-learn.org/stable/
10 https://www.tensorflow.org/

tissue specific markers, on the other hand in the cross-tissues 
section we could focus on the set of genes that explained the 
relationship between tissues. We used three different filter 
lists: List-unsupervised, List-PrediXcan and List-UTMOST (see 
Supplementary Materials Section 3). Using these lists the 
input dimensions for all the tissues decreased: the number of 
unique genes identified by the List-unsupervised was 2,016, 
4,984 with List-PrediXcan. List-UTMOST (649 genes) was used 
only in the cross-tissue analysis as it doesn’t provide tissue-
specific information.

All the steps described above (except the architecture selection 
and saliency map) were also performed considering Cognitive 
Decline over time rather than diagnosis at screening. This 
dataset consisted of 528 samples (some samples did not have this 
information), 281 controls and 247 cases. Cognitive Decline has 
been calculated by considering the difference between the Mini-
Mental State Examination (MMSE) score 4 years after recruitment 
and the MMSE score at recruitment. Then, regardless of the original 
recruitment diagnosis, we classified the samples into two groups: 
one group showing no cognitive decline (difference equal or greater 
than 0) and the other showing a cognitive decline (difference minor 
than 0). The genes imputed for each tissue were therefore the 
same in ADNI1-GWAS dataset and Cognitive Decline dataset. To 
consider the effect of AD related variables, we also performed the 
same analyses by stratifying by sex and early/late onset for dementia 
and AD [using 65 years of age as a cutoff (Roberts and Petersen, 
2014)] as well as for carrier and noncarrier of APOE ∊4 isoform.

RESULTS

We predicted the genetic component of gene expression across 42 
non-sex-specific tissues for all the samples included in ADNI1-
GWAS dataset. We exploited tissues specific eQTL models 
available on precictDB11 and used PrediXcan tool12 to derive 
tissue specific matrices representing individual levels of the 
genetic component of gene expression. The gene levels obtained 
by these sample matrices represent transcriptomic profiles based 
on eQTL across tissues in the analyzed dataset.

In the present work the matrices of imputed expression were 
analyzed using several machine learning strategies to identify 
potential tissue specific transcriptomic profiles associated with 
cognitive decline in Alzheimer’s.

Gene-Based Results Per Tissue
We runned t-SNE (Maaten and Hinton, 2008) using the 42 
activations on each latent dimension of a VAE to check the 
embedded structure of all samples, whose result can be seen 
in Figure 2. Although interpretations of Euclidean distances 
between points in a t-SNE plot is not straightforward (Wattenberg 
et al., 2016), it is clear from the clusters that information about 
tissues are being encoded. Indeed, we were able to identify 
associations between latent dimensions of VAE and tissue.

11 http://predictdb.org/
12 https://github.com/hakyimlab/PrediXcan
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The evaluation of the weights associated with the latent 
dimension (see Methods) allow us to rank gene importance per 
tissue considering case/control status. Table 1 shows the most 
upregulated and downregulated genes from Brain Nucleus. 
Check Supplementary Table S1 for complete information over 
all 42 tissues.

The saliency map implementation returned not useful 
information. If taken individually, genes don’t have much impact: 
it is evident also with this result that the AD phenotype is due to a 
combination of many genes and environmental factors.

In order to investigate the presence of specific gene expression 
regulation associated with case/control status we considered 
the lists of tissue-specific up and down regulated genes derived 
by VAE analysis. Additionally, for each tissue we considered 
the genes that were differentially regulated in cases but not in 
controls, that is representing a disease-specific signature. The 
enrichment analysis have been performed considering Gene 
ontology13, KEGG14 and reactome15 and pathway databases (Croft 
et al., 2013; Kanehisa et al., 2016). Complete enrichment analysis 
results are available as supplementary files (see Supplementary 
Materials Section 1) while significant enrichment tissues specific 
pathways after FDR correction are shown in Table 2.

Interestingly enrichment analysis shows the presence of 
tissue specific signal in a specific brain tissue (i.e., brain nucleus) 
concerning pathways involved in gene expression regulation and 
in immune-related pathways in colon (Figure S2). The most 
significant alterations in brain pathways concern the brain nucleus 
accumbens (basal ganglia) region. Interestingly, this region has 
been found to be associated with AD (Nie et al., 2017; Nobili 
et al., 2017; Li et al., 2018). Instead, the detected downregulation 
of immune system pathways in cases in comparison to controls 
could indicate a higher level of inflammation in dementia. This 
is in line with the association observed between inflammatory 
bowel diseases and AD (McCaulley and Grush, 2015; Sochocka 
et al., 2019). Given the pivotal role of APOE (Liu et al., 2013) in 
AD a specific evaluation was performed to evaluate the effect of 
APOE related genes.

APOE gene expression is not predicted by gene expression 
imputation GTEx based models, due to the absence of eQTL 
explaining a relevant fraction of APOE expression level. However, 
AD susceptibility due to APOE isoforms (∫2, ∫3 and ∫4), which 
are well known to confer a different risk for AD depending on the 

13 http://geneontology.org/
14 https://www.genome.jp/kegg/pathway.html
15 https://reactome.org/

presence of missense coding variants, are associated with APOE 
gene functionality and can be independent from the genetic 
component of gene expression regulation. We investigated if 
other genes directly interacting with APOE, according to string 
functional database16, have a significant association in our 
analysis (see Supplementary Materials Section S3).

One of the 11 genes identified, namely APOC2 (Shao et al., 
2018), is among the top differentially regulated genes from 
variational autoencoder gene prioritization list in brain putamen, 
an area of the brain associated with AD (Coupé et al., 2019). 
Interestingly, the same gene is also the only one (among the 
11 APOE interacting genes) significantly associated with AD 
according to a transcription wide association analysis performed 
according to a GWAS on AD in UK Biobank dataset (Marioni 
et al., 2018) and public available on TWAS hub17. This suggests 
a potential role for APOC2 associated with the gene expression 
regulation and, interestingly, a recent work showed that the 
methylation profile in such a gene (which in turn affect gene 
expression) is associated with AD (Shao et al., 2018).

Tissue-Specific and Cross-Tissues 
Classification
To understand which network performs better on different 
tissues, we tested five models on six sample tissues. In Table 3, 
accuracy and AUC obtained during their preliminary 10 
cross-validation training on 600 of 808 samples are reported: 
although all methods could perform well at least on one tissue 
during the training, in that phase only the RNN was capable 
of reaching an accuracy higher than 90% for all of them. 
Therefore we decided to optimize the RNN and obtained the 
network structure described in Phenotype Prediction Models 
From Imputed Transcriptomic Matrices, which was then applied 
for the single-tissue and cross-tissue analysis on ADNI1-GWAS 
and Cognitive Decline dataset.

Without the feature selection, we observed a great performance 
during the training in terms of AUC, accuracy, precision, recall 
and F1 scores (see Supplementary Materials Section 2) on 
both datasets. On test set (composed of 208 samples for tissue 
for ADNI1-GWAS and 128 for Cognitive Decline) the metrics 
reached values below expectations, with AUCs near 0:5 especially 
for ADNI1-GWAS.

16 https://string-db.org/cgi/network.pl
17 http://twas-hub.org/

TABLE 1 | Most upregulated and downregulated genes from the brain nucleus.

Downregulated Upregulated

AD-MCI CTR AD-MCI CTR

Brain nucleus ENSG00000230850.3 ABHD14A ENSAP2 AL356475.1
GMPR2 ATP2B4 KLF1 F2
C1QC BDKRB2 EEF1A1P19 NRIP2
SUN3 C1QC RP5-1068B5.3 RP11-704J17.5

RP11-662J14.1 PXN RP11-321A17.3 RP11-321A17.3
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On ADNI1-GWAS (Figure 3), models trained for single-
tissue analysis improved their AUCs thanks to the List-
unsupervised and List-PrediXcan feature selection: when the 
AUCs were below 0:5, the filters application returned a score 
above the threshold for at least one list. We did not observe a 
major impact of a list in this phase but the t-test confirmed a 
significant improvement compared to the no filter approach 
(p-value = 0.001474 for List-unsupervised and p-value = 2.693e – 
06 for List-PrediXcan). Models trained for the cross-tissue 
analysis instead had a less evident improvement with the lists 
filter: only the List unsupervised returned a slightly significant 
improvement (p-value = 0.04084). List-UTMOST did not give 
any improvement and, as we could not use it on single-tissue 
models, we decided not to further analyze it.

Cognitive Decline models performed better than ADNI1-
GWAS, both in single-tissue and cross-tissue analysis (Figure 
4). The lists application on Cognitive Decline models also led 
to an improvement for tissues with borderline or below the 

threshold performance (Figure S5), reaching AUCs between 
0:51 and 0:6. On cross-tissue models we obtained a significant 
p-value = 0.008766 for List-unsupervised and p-value = 0.04346 
for List-PrediXcan.

Comparing the two lists on ADNI1-GWAS, List-unsupervised 
showed the bigger improvement on cross-tissue models: the 
t-test returned a p-value of 0:009123, but on single-tissue the 
difference was not significant. Also on Cognitive Decline we 
observed a slightly major impact of List-unsupervised both for 
the single-tissue and cross-tissue models. In Figure 5, a focus on 
the improvement achieved with the filter on the Brain tissue is 
shown in both datasets, in Figure S4 the evaluation for all tissues 
is shown.

Figure 6 reports, by columns, the AUC achieved by 
ADNI1-GWAS cross-tissue models when they were applied 
on other tissues from the same dataset. The top heatmap 
describes the relationships between tissue when no filter 
is applied: we could observe that models trained on Brain 

TABLE 2 | Significant tissue-pathways enrichment analysis using Reactome database.

Tissue Pathway pval padj ES NES Genes

Colon sigmoid Immune system 3.8E–04 1.2E–02 –5.4E–01 –2.3E+00 CAP1 FBXO21
RASGRP4 CLEC7A
RASGRP4 CLEC7A
YES1 SEC61A1
SIGLEC8 IL13
CD47 HLA-DPB1
SELL KIF11
CALM1

Brain nucleus Generic transcription 
pathway

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Brain nucleus RNA polymerase II 
transcription

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Brain nucleus Gene expression 
(transcription)

3.0E–03 1.8E–02 7.2E–01 2.1E+00 ZNF688 RRAGC
ZKSCAN8 ZNF697
ZNF445 CASP6

Colon sigmoid Adaptive immune 
system

3.0Ev03 3.3E–02 –6.1E–01 –2.1E+00 FBXO21 YES1
SEC61A1 SIGLEC8
HLA-DPB1 SELL
KIF11 CALM1

Colon sigmoid Innate immune system 2.5E–03 3.3E–02 –6.5E–01 –2.0E+00 CAP1 RASGRP4
CLEC7A YES1
CD47 SELL
CALM1

TABLE 3 | Preliminary networks training performance on six sample tissues: accuracy (Acc) and area under the curve (AUC).

Network
Adipose 

subcutaneous 
Artery aorta Brain spinal Colon transverse Thyroid Whole blood

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

DNN-1 37.50 0.513 37.33 0.503 64.00 0.538 87.67 0.862 64.50 0.503 39.83 0.516
DNN-2 64.50 0.5 64.50 0.5 90.17 0.892 64.50 0.5 64.50 0.5 64.50 0.5
CNN-1 63.00 0.5 76.92 0.721 77.50 0.901 78.50 0.770 64.08 0.5 0.491
CNN-2 95.83 0.948 64.50 0.5 94.83 0.943 64.50 0.5 96.00 0.95 95.67 0.947
RNN 96.17 0.953 95.67 0.951 94.67 0.942 95.33 0.946 95.33 0.946 94.67 0.939
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tissues, if they were able to correctly identify the AD subjects 
on a non-Brain tissue, they could do the same on all the other 
non-Brain tissues. Instead, models trained on non-Brain 
tissue could identify AD-MCI/CTRL subjects only on a subset 
of tissues. We performed the same analysis on ADNI1-GWAS 
models filtered by List-PrediXcan and List-unsupervised, 
respectively the middle and bottom heatmaps of Figure 6: 
List-unsupervised removed all the information of cross-tissue 
relationships, when instead List-PrediXcan mitigate them, 
pointing out the non-Brain models relationships.

We also tested the stratification for sex, age, APOE effect, 
and AD condition on ADNI1-GWAS dataset for single-tissue 
and cross-tissue analysis. It returned no considerable variation 
in the performance. The saliency map application was also not 
informative: each sample has the same importance. Lastly, we 
performed the filter analyses on Cognitive Decline, pointing out 
the same results (Figure S6).

DISCUSSION

In the present work we dissected the tissue specific genetic component 
of gene expression in association to AD related cognitive decline. 
Our analysis consisted on the imputation of tissue specific gene 
expression profiles by using a TWAS-like approach (Mancuso et al., 
2017). However, contrary to the standard TWAS analysis, we did not 
specifically focus on univariate analysis (e.g., gene association based 
on logistic or linear regression). Instead, we dissected individual 
transcriptomic levels using different machine learning approaches. 
We believe that our approach can be of particular interest since is 
capable of capturing data structure and non-linear behaviour in the 
system. In fact, it is well known that gene expression levels are not 
independent, since many genes are actually correlated in terms of 
regulation (Michalopoulos et al., 2012) and functionality, which 
means that also epistatic interactions can play a major role in the 
regulation of biochemical pathways (Sameith et al., 2015).

FIGURE 3 | ADNI1-GWAS feature selection evaluation. The single-tissue models (top panel) significantly improved their ability to classify case/control condition 
thanks to both List-unsupervised (blue) and List-PrediXcan (red) compared to the no filtering approach (black). On cross-tissue models (bottom panel), where there 
is also the performance with the List-UTMOST (green), the improvement was less evident.
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FIGURE 4 | ADNI1-GWAS and Cognitive Decline comparison: Cognitive Decline (red boxes) returns higher AUCs on test sets than ADNI1-GWAS (blue boxes) both 
in cross-tissue models (left) and in single-tissue models (right).

FIGURE 5 | Brain tissues analysis. In green the AUCs on test sets for the no filter application are reported, in red for List-unsupervised and in yellow for List-
PrediXcan. The top two panels report respectively the cross-tissue and single-tissue models performance on ADNI1-GWAS dataset, the third and fourth panels on 
Cognitive Decline. In both datasets, feature filtering improved the classification in almost all the Brain tissues.
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Interestingly, we observed that a combination of 
unsupervised and supervised machine learning methods on 
matrices of predicted expression provided complementary 
information that can be integrated in order to get new insights 
in gene expression regulation. On one hand, the VAE combined 
with enrichment analysis suggests the presence of a specific 
biochemical pathways alteration in dementia occurring in 
a specific brain area and in the gut. The identified alteration 
occur in brain nucleus, a brain region found to be associated 
with AD by several studies (Cho et al., 2014; Wang et al., 2014; 
Kuhn et al., 2015; Liu et al., 2015).

This alteration seems to be related to the regulation of gene 
expression and 436 therefore possibly associated to tissue-specific 
pathways regulation. Instead, the enriched pathways in gut are related 
to immune systems and noteworthy, it is well established that immune 
system dysfunctions can lead to a greater increase of inflammation in 
AD (Serpente et al., 2014; Heppner et al., 2015; Le Page et al., 2018). 
These results suggest that our analytical approach can identify relevant 
biological alterations occurring in AD. Noteworthy, enrichment 
analysis identified alteration in biological pathway specifically in a 
brain area and gut, which is in line with the presence of a gut-brain 
axis dysfunction in AD. Indeed, several researchers pointed out that 

FIGURE 6 | Continued
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brain-gut axis can be associated with many neurological disorders 
(Giau et al., 2018; La Rosa et al., 2018).

In the present work, APOE genotype has not been directly 
included as covariate in prediction models since our aim was 
to identify other genetic factors that can explain part of the 
missing heritability on the established polygenic component 
in AD (Escott-Price et al., 2017; Tosto et al., 2017). However, 
APOE is expected to be by far the most influencing risk factor 
for late onset AD. Though estimation of APOE contribution 
on the heritability component of AD is still not well defined, 
ranging from 10% to 28% of the overall genetic heritability (Van 
Cauwenberghe et al., 2016; Stocker et al., 2018). Moreover, in the 
present work, gene-expression derived genetic signals neglect 
not-eQTL effects and therefore we have limited analytical power. 
This justifies the relatively low AUC values in comparison to 
other prediction models in AD, including the complete genome-
wide polygenic signal and using APOE as a covariate (Escott-
Price et al., 2017; Tosto et  al., 2017). Our aim was indeed to 
test whether or not there is a genetic signal associated with AD 
that could be apportioned to tissue specific gene-expression 
regulation rather than identify a prediction model. It is also 
known that genetics is just one of the component involved in 
AD susceptibility and therefore the use of multimodal data (e.g., 
imaging data, clinical features, metabolomic, and environmental 
factors) should be taken into account in order to build a reliable 
classifier in term of translational application (Sapkota et al., 

2018). Despite that, our classification models were still capable 
of finding a signal between cases and controls (overall AUC 
> 0:5) suggesting that part of the genetic signal in AD related 
dementia can be associated with tissue-specific gene expression 
regulation. Moreover, we observed that feature selection 
can play a major role in the performance of deep learning  
networks classification.

We are aware that our work presents some limitations. We 
performed a genetic association with dementia by considering 
ADNI data evaluating the solely genetic component of gene 
expression, which neglects other potential genetics effect not 
related to gene-expression regulation. Our models are also 
limited by the current version of GTEx data, which has a 
relatively small size, therefore it is expected that over time new 
models will optimize eQTL estimation leading to more precise 
analyses of the genetic component of gene expression. We also 
focused on non-sex specific tissues, since we wanted to study 
general potential alterations not involving sex-specific organs, 
but this could also be a limitation given the different prevalence 
of AD in females and males (Mazure and Swendsen, 2016).

CONCLUSION

In the present work, we performed an analysis of the predicted 
genetic component of gene expression in ADNI1-GWAS dataset 

FIGURE 6 | ADNI1-GWAS cross-tissues performance. By column we can observe how much a model trained on a tissue is able to recognize without mistakes 
(AUC) AD/non-AD subjects from data related to different tissues. On the diagonal for each tissue the AUC obtained for that model during the training is reported. 
The top panel reports the cross-tissue results without any filter application, the middle panel when using List-PrediXcan and the bottom using List-unsupervised.
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in association with AD cognitive decline. We dissected the 
predicted tissue specific gene expression by means of different 
supervised and unsupervised machine learning approaches. Our 
results suggest that a framework including unsupervised and 
supervised methods in data-analysis can provide complementary 
information and thus leading to better insights into the 
underlying system.

In particular, variational autoencoder pre-processing of input 
data proved to be efficient for features selection prior to the 
implementation of deep learning classification models. However, 
the limited AUC prediction performance of the developed models 
suggests that the evaluation of the solely genetic component of 
gene expression by exploiting up to date available GTEx models 
is currently under-powered in comparison to genome-wide 
polygenic risk score modeling.

This is not surprising since we are neglecting the effect of non-
eQTL variants. On the other hand, we can disclose tissue specific 
effects and reveal potential biological mechanisms associated 
with a given phenotype. In this regard, our analysis showed that 
brain tissues are more associated with dementia status and that 
inflammatory processes in brain-gut axis can play a role in AD.
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